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Multiplicative Noise and Non-Gaussianity: A Paradigm for Atmospheric Regimes?
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ABSTRACT

Atmospheric circulation statistics are not strictly Gaussian. Small bumps and other deviations from
Gaussian probability distributions are often interpreted as implying the existence of distinct and persistent
nonlinear circulation regimes associated with higher-than-average levels of predictability. In this paper it is
shown that such deviations from Gaussianity can, however, also result from linear stochastically perturbed
dynamics with multiplicative noise statistics. Such systems can be associated with much lower levels of
predictability. Multiplicative noise is often identified with state-dependent variations of stochastic feedbacks
from unresolved system components, and may be treated as stochastic perturbations of system parameters.
It is shown that including such perturbations in the damping of large-scale linear Rossby waves can lead to
deviations from Gaussianity very similar to those observed in the joint probability distribution of the first
two principal components (PCs) of weekly averaged 750-hPa streamfunction data for the past 52 winters.
A closer examination of the Fokker—Planck probability budgetin the plane spanned by these two PCs shows
that the observed deviations from Gaussianity can be modeled with multiplicative noise, and are unlikely
the results of slow nonlinear interactions of the two PCs. It is concluded that the observed non-Gaussian
probability distributions do not necessarily imply the existence of persistent nonlinear circulation regimes,
and are consistent with those expected for a linear system perturbed by multiplicative noise.

and Baur (1947) for use in statistical long-range
weather forecasting. Dynamical theories of multiple
equilibria (blocked and zonal regimes) due to wave—
mean flow interactions, first proposed by Charney and
DeVore (1979), Wiin-Nielsen (1979), and Hart (1979),
spurred- a renewed effort to explore the existence of
regimes in observed midlatitude flows (e.g., Sutera
1986; Hansen and Sutera 1986; Mo and Ghil 1988; Mol-
teni et al. 1990; Kimoto and Ghil 1993a,b; Cheng and
Wallace 1993; Corti et al. 1999; Smyth et al. 1999;
Monahan ct al. 2001; and many others). However, these
observational studies generally did not find regime be-
havior as pronounced as in the theoretical and simple
model studies. In fact, for monthly time scales, the ob-
servational evidence for regimes remains so weak that
the null hypothesis of multinormal behavior cannot be
rejected at the 5% confidence level (Stephenson et al.
2004).

The term “regime” can be nonspecific in common
usage. It is often used merely to refer to a rapid tran-
sition to a quasi-stationary state. With this meaning,
even some stable linear systems can exhibit “regime
transitions” as a result of rapid singular-vector growth.
Indeed, observed atmospheric regime transitions of this
type can be well simulated by relatively low-dimen-

1. Introduction

Atmospheric predictability is limited by the chaotic
nature of weather. There are many different ways of
defining predictability; for example, we may consider
the doubling time of initial uncertainty. In forecasting,
it is of considerable interest to find those initial atmo-
spheric states for which this error doubling time is par-
ticularly long.

Attention has thus been paid to finding persistent
or quasi-stationary atmospheric flow regimes, often
loosely defined as large-scale atmospheric flow configu-
rations that persist longer than individual weather sys-
tems (e.g., Pandolfo 1993). More specifically, regimes
are identified with “preferred” regions of the atmo-
spheric state space. The hope is that such regions con-
tain initial atmospheric states from which better long-
term forecasts are possible.

The idea of weather regimes, in terms of midlatitude
cyclone tracks over Europe, was first proposed by van
Bebber (1891). The more modern phenomenological
notion of midlatitude atmospheric flow regimes, or
Grofiwetterlagen, was introducced by Baur ct al. (1944)
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sional linear models (Cash and Lee 2001; Winkler et al.
2001). To the extent that they are also good forecast
models of weekly averages (Newman et al. 2003), such
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modcls imply an important constraint on the naturc of
nonlinearity in the atmosphere. We will return to this
point later.

A stable linear system driven by Gaussian forcing
will result in Gaussian statistics. Therefore, a necessary
condition for regime behavior resulting from nonlinear
dynamics is non-Gaussianity of the probability distri-
bution function (PDF) representing all possible atmo-
spheric states. As in the studies cited above, we will
focus on this condition in this paper. Ideally, one would
like to find significant multiple peaks in the full PDF.
However, because of the limited data record, observa-
tional studies of climate regimes typically examine the
bivariate PDF of the amplitudes of the two leading em-
pirical orthogonal functions (EOFs) of an appropriate
atmospheric variable (e.g., Mo and Ghil 1988; Molteni
et al. 1990; Kimoto and Ghil 1993a,b; Corti et al. 1999;
Smyth et al. 1999; Weisheimer et al. 2001). It is impor-
tant to note again that such PDFs do not show any
statistically significant multimodality. Rather, they
show “inhomogeneities” (statistically significant devia-
tions from bivariate Gaussianity) that are often inter-
preted as indicative of multiple Gaussian regimes
(Smyth et al. 1999).

Models of regime behavior can be thought of as mod-
els of low-frequency atmospheric variability. They may
be expressed as

dx
T Lx + Ny(x, x) + Ny(x, x’) + N3(x’, x") + F,

1

where x represents the resolved (e.g., low frequency or
slow) portion of the atmospheric anomaly vector, and
x’ the unresolved (e.g., high frequency or fast) portion.
Here, Lx denotes lincar dynamics, and Ny, N,, N3 non-
linear interactions between slow-slow, slow—fast, and
fast—fast components, respectively; F represents exter-
nal forcing. A common explanation for extratropical
climate regimes is that they result from nonlinearities in
the slow manifold of the equations governing atmo-
spheric dynamics, that is, from Nj (e.g., Legras and Ghil
1985; Yodcen 1985a,b; Ghil and Childress 1987; DecSwart
1988; Itoh and Kimoto 1996, 1997, 1999; Ghil and Rob-
ertson 2002; and many others). It is this slow process
that gives hope for long-range predictability. Of course,
slowly evolving external non-Gaussian forcing in F,
such as that produced by anomalous tropical convec-
tion due to the Madden—Julian oscillation (MJO) and
El Nifio—Southern Oscillation (ENSO), could also pro-
duce a non-Gaussian response in the extratropics even
if the extratropical dynamics were linear.

Regimes that result from either or both of these
mechanisms might indeed be more predictable than
other atmospheric states. There is, however, a third
possibility: regimes could result not from slow pro-
cesses but rather from the fast (i.e., rapidly decorrelat-
ing) nonlinearities of the dynamical system contained in

N, and N;. Furthcrmore, given the very high number of
degrees of freedom in the atmosphere and the conse-
quent plethora of nonlinear subsystems, it is highly
likely that there exists chaos sufficiently disordered as
to make the application of the Central Limit Theorem
(e.g., Khasminskii 1966; Papanicolaou and Kohler 1974;
Sardeshmukh et al. 2001; Majda et al. 1999, 2003) valid
at medium-range time scales as short as a week. In this
case, the fast nonlinearities may be approximated as
state-dependent, or multiplicative, stochastic noise that
is inherently unpredictable [for state-independent, or
additive, noise this approximation was first noted in a
climate context by Hasselmann (1976)].

That apparently similar regimes can result from ei-
ther slow or fast nonlincaritics is illustrated in Fig. 1 (a
more quantitative discussion is given in section 3). Con-
sider a double potential well as a simple model of two
regimes resulting from nonlinearities of the slow mani-
fold. System transitions from one potential well to the
other by additive noise kicks will result in a bimodal
PDF. This is not, however, the only dynamical system
that can produce such a PDF. Consider instead a linear
system, represented by a unimodal deterministic poten-
tial, in which the state trajectories are perturbed by
multiplicative noise. If the noise is relatively stronger in
the center of the potential well than at the edges, then
this system will also have a bimodal PDF. Thus the
same bimodal PDF can result from either a slow (de-
terministic) nonlinear dynamical system or a fast (sto-
chastic) nonlinear dynamical system. As we will see,
however, the predictability of these two systems is very
different.

In this paper we use both simple models and obser-
vational analysis to develop the hypothesis that atmo-
spheric non-Gaussian regimes may be due to multipli-
cative noise. First, in section 2, some principal results of
stochastic dynamics are briefly reviewed. Then, in sec-
tion 3, we discuss some simple examples that demon-
strate how a given PDF can imply very different pre-
dictability . depending upon whether the PDF results
from slow deterministic nonlinear evolution or fast sto-
chastic evolution. In section 4, stochastic perturbations
of the linear damping coefficient and the ambient zonal
mean flow are considered in a linear model of Rossby
wave evolution to assess the impact of multiplicative
noise in a simple, but meteorologically relevant, setting.
By explicitly solving the Fokker-Planck equation and
the stochastic differential equation, we show that mul-
tiplicative noise in the frictional damping leads to in-
termittency and consequently a highly non-Gaussian
distribution. These results provide one possible expla-
nation for the non-Gaussian PDF found in the obser-
vational analysis presented in section 5, where it is
shown that the regime behavior in the leading EOFs of
750-hPa Northern Hemisphere streamfunction is con-
sistent with that resulting from multiplicative noise. Fi-
nally, section 6 provides a summary and a discussion.
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F1G. 1. A schematic sketch to illustrate the fundamental dynamical difference between
deterministically and stochastically induced regimes. The effective PDF of a trajectory in a
deterministic double-well potential driven by additive noise will be bimodal. The same effec-
tive PDF can be produced by a trajectory in a unimodal deterministic potential kicked around
by multiplicative noise. Because of the larger noise amplitudes near the center of the mono-
modal potential, as compared to the strength of the noise right and left of if, the system’s
trajectory is more often found on either side of the central noise maximum. Thus, the PDF
becomes bimodal. See appendix A for a mathematical formulation of this behavior.

2. Stochastic dynamics in a nutshell

This section reviews a few basic ideas of stochastic
dynamics used in this paper. More comprehensive
treatments may be found in many textbooks (e.g., Gar-
diner 1985; Horsthemke and Léféver 1984; Paul and
Baschnagel 1999).

Consider the dynamics of an n-dimensional system
whose state vector x is governed by the stochastic dif-
ferential equation (SDE)

dx
= = A®) + Bom, )
where the vector A represents all slow processes and
B(x)n, with the matrix B and the noise vector m, rep-
resents the stochastic approximation to the fast nonlin-
ear processes. The stochastic components m), are as-
sumed to be independent Gaussian white noise pro-
cesses:
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MDY =0, (mom{r"))y =8 — 1), 3)

where (.. .) denotes the averaging operator. The corre-
sponding Fokker—Planck equation,

EB[AJF E<BB>B](I)
- e 7 a 5. P ik |PAX,
,.dx,- i < dxj ik jk
1 82
+7

~ dx,0x;

ap(x, 1)
ar

(BBT)ijp(X, t), (4)

describes the conservation of the probability density
p(x, £) of the system described by the SDE (2). Two
different values of « yield two physically important sto-
chastic calculi: the Itd (« = 0) and the Stratonovich
calculus (a = 1/2). On the right-hand side, the first term
within square brackets describes the dynamics of the
deterministic system and is called the deterministic
drift. The second term within square brackets, which
does not occur in Itd systems (a = 0), is called the
noise-induced drift. The remaining term is associated
with the diffusion of the probability density by noise.

For a detailed discussion of stochastic integration and
the differences between It6 and Stratonovich SDEs, see
Horsthemke and Léféver (1984), Gardiner (1985), or
Penland (1996). The key point here is that the Stra-
tonovich calculus is relevant for continuous physical
systems, such as the atmosphere, in which rapidly fluc-
tuating quantities with small but finite correlation times
are approximated as white noise. Thus, simplified sto-
chastic models constructed from atmospheric dynami-
cal equations may assume Stratonovich calculus. How-
ever, if a stochastic model is indirectly estimated from
observed discrete data, then the inferred drift will be
the sum of the deterministic and the noise-induced
drifts. In this casc, using the Ité framework may be
preferable, where now A(x) represents not just the de-
terministic drift but rather this sum, or the “effective
drift.”

Equations for moments of x can be obtained by mul-
tiplying the Fokker-Planck Eq. (4) by powers of x and
integrating over all x. In particular, second moments of
x arc given by

d{xx")
dt

= (A(x)x") + (xAT(x)) + (B®)B'(x)). (5)

This equation is known as the fluctuation—dissipation
relation (FDR) of the system (see e.g., Penland and
Matrosova 1994).

In principle, the deterministic and stochastic parts of
(4) can be determined from data by using their statis-
tical definitions (Siegert et al. 1998; Friedrich et al.
2000; GradiSek et al. 2000; Sura and Barsugli 2002; Sura
2003; Sura and Gille 2003):

1
A= lim = (XE+A) = Xlxpex  (6)

B(x)B’(x) = lim Alt X(¢ + Af) — XX + AD)

@)

where X(¢ + A¢) is a solution (a single stochastic real-
ization) of the SDE (2) with the initial condition X(7) =
x at time . The data define a state space representing
every observed value of x. The effective drift and sto-
chastic diffusion are estimated by replacing the theo-
retical limit Ar — O with a finite-difference approxima-
tion. In practice, estimating B(x)B"(x) from discretely
sampled data is prone to error, because Taylor expan-
sions of stochastic terms are proportional to \/Af and
not proportional to Ar as are the deterministic terms
(e.g., Sura and Barsugli 2002; Sura 2003). Note that
B(x)B”(x) rather than B(x) is estimated from data. In
general, it is impossible to find a unique expression for
B(x) in the multivariate case (e.g., Monahan 2004).

When A and B are known, analytical solutions of the
Fokker-Planck Eq. (4) for p(x, f) can only be found in
limited cases (appendix B presents one such case). For
more general cases, numerical methods must be used.
To interpret the results of the Fokker—Planck equation,
numerical integrations of the SDE (2) can also be per-
formed.

T
- X] >|X(I):x>

3. Two paradigms for atmospheric regimes

Obviously, a given non-Gaussian PDF can represent
many different dynamical systems. However, it is illus-
trative to consider two extreme models: a deterministic
model, in which regimes are entirely due to a nonlinear
deterministic A (perturbed only by state-independent
noise), and a stochastic model, in which regimes are
entirely due to a multiplicative noise term B (with only
a linear A). That two such models can produce the
same PDF was highlighted in Fig. 1. The mathematical
details of the two models are given in appendix A.

First, we quantify the simple example presented in
Fig. 1 by applying these models to the bimodal PDF
p(x) = (18w {exp[—(x + 1.5)%2] + exp[—(x — 1.5)%
2]} (see Fig. 2a). Because observed PDFs rarely show
any clear multimodality, we also consider the “skewed”
PDF given in Fig. 3a, whose departure from Gaussian-
ity is relatively small but isconsistent with that observed
for weekly averaged circulation anomalies (see section
5). It has a heavier tail than a Gaussian for values x <
=2 (regime 1), is smaller than a Gaussian for —2 <x <
—0.3, and is again heavier than a Gaussian for —0.3 <
x < 0.5 (regime 2). For larger x the PDF is strictly
Gaussian.

Given the PDF and B* = 1, we can solve for A(x)
[Eq. (A.3); see appendix AJ; results for the bimodal
PDF are in Fig. 2b and for the skewed PDF in Fig. 3b.
In this casc the non-Gaussianity is duc to the nonlin-
earity of the deterministic term A(x). Alternatively,
given the PDF and A(x) = —e&x, we can solve for B(x)
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FIG. 2. (a) Graph of the bimodal PDF p(x) = (1A/8m[exp(—(x + 1.5)%/2) + exp(—(x —
1.5)%/2)]. (b) Solution of (A.3), given the bimodal PDF and additive noise B> = 1. (c) Solution
of (A.4), given the bimodal PDF and a linear deterministic term A(x) = —x.

[Eq. (A.4)]; results for the bimodal PDF for & = 1 are  the skewed PDF is approximately piecewise linear, and
in Fig. 2c and for the skewed PDF in Fig. 3c. Now the that as opposed to the stochastic model for the bimodal
non-Gaussianity is due to the structure of the multipli- PDF, the noise amplitude increases for decreasing
cative noise term B(x). Note (see Fig. 3c) that B(x) for negative x.

[2}

Al

a2
'
h

F1G. 3. (a) Graph of the non-Gaussian PDF (solid line); the corresponding Gaussian PDF
is indicated by the dashed line. (b) Solution of (A.3), given the PDF and additive noise B> =
1. (c) Solution of (A.4), given the PDF and a linear deterministic term A(x) = —x.
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Although the stationary PDFs of the dcterministic
and stochastic regimes are identical, the conditional
PDFs (the probability of an event given that another
event has occurred) and related mean residence times
are not. Here, we define residence time as the time it
takes a stochastic trajectory initially at x in the interval
[x1, x,] to first leave that interval (see appendix A for
more details). For example, the mean residence time
in the right peak of the bimodal PDF (interval [1, 2]),

shown in Fig. 4a, is considerably longer for the deter-

ministic model than for the stochastic model. A similar
difference between the two models exists in the interval

[—3.5, —2.5] for the weakly skewed PDF (Fig. 5a), but

is much less for the interval [—0.25, 0.75] (Fig. 5b).

Not surprisingly, the predictability in these two sys-
tems is also very different. Here, we define predictabil-
ity by the expected skill of a perfect model infinite-
member forecast ensemble, measured as an anomaly
correlation:

S(7)
A1) = —F——,
P AV

where S(1) = s(7)/o(7) is the signal-to-noise ratio and 7
is the forecast lead (for example, Sardeshmukh et al.
2000; Newman et al. 2003). Here, the signal s(1) is the
ensemble mean, and the noise o(r) is the ensemble
standard deviation, and p.(7) is the expected skill of a
perfect model in which the signal is determined as the

(8)

mean of an infinitc-member cnsemble [sce Sardesh-
mukh et al. (2000) or Newman et al. (2003) for a more
detailed discussion]. For the bimodal PDF, p..(1) for the
initial condition x; = 1.5 for the deterministic and the
stochastic models, is shown in Fig. 4b; p,.(7 = 2) as a
function of initial condition is shown in Fig. 4c. As im-
plied by the mean residence times, predictability is
much less for the bimodality than that due to determin-
istic nonlinear dynamics because of unpredictable mul-
tiplicative noise. For the skewed PDF, p.(1) for the
initial conditions x, = —3, and x, = 0.25 are shown in
Figs. Sc,d; p..(T = 2) as a function of initial condition is
shown in Fig. Se. Note in Fig. 5d that p.(7) for the
deterministic and stochastic models (and the initial con-
dition x, = 0.25) are almost identical. Interestingly, pre-
dictability for the deterministic model is generally
higher for negative x, whereas it is generally higher for
positive x in the stochastic model. Thus, a characteriza-
tion of predictability for a system represented by a
given marginal (that is, unconditional) PDF depends on
the dynamics of the underlying system, and cannot be
inferred merely from the non-Gaussianity of the mar-
ginal PDF.

One point remains to be discussed. It seems possible
that the lower predictability of the stochastic models
might be entirely due to a shorter autocorrelation time
scale because we arbitrarily prescribed a certain deter-
ministic time scale by using A(x) = —sx with ¢ = 1 in
Eq. (A.4). For the bimodal example, setting £ = 0.15
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F1G. 4. Statistics of the bimodal case (see Fig. 2). (a) The mean residence time for the
deterministic (sold line) and the stochastic model (dashed line) in the interval [1, 2], (b) p., as
a function of lead time for the deterministic (solid line) and the stochastic model (dashed line)
for the initial condition x, = 1.5, and (¢) p,. as a function of initial condition for the deter-
ministic (solid line) and the stochastic model (dashed line) for the lead time 7 = 2.
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F16. 5. Statistics of the non-Gaussian case (see Fig.3). The mean residence times for the
deterministic (solid lines) and the stochastic model (dashed lines) in the intervals (a) [—3.5,
—2.5], and (b) [-0.25,0.75]. Also p.. as a function of lead time for the deterministic (solid line)
and the stochastic model (dashed line) for the initial conditions (c) x, = —3, and (d) x, = 0.25
(note that p..(7) for the deterministic and stochastic model are almost identical), and (e) p., as
a function of initial condition for the deterministic (solid line) and the stochastic model

(dashed line) for the lead time 7 = 2.

ensures that the multiplicative noise model has the
same autocorrelation function as the deterministic
modcl. But, cven then, the stochastic model is less pre-
dictable than the deterministic model. For the more
realistic skewed example, however, the stochastic and
the deterministic models have virtually identical auto-
correlation functions. That is, in both the bimodal and
the skewed examples, the difference in predictability is
also due to the structure of the noise and not only the
damping time scalc of the deterministic term.

4. Stochastically perturbed Rossby waves

In stochastic atmospheric models, noise is introduced
primarily as an additive process (e.g., Egger 1981;
DeSwart 1988; DelSole and Farrell 1995; Farrell and
Toannou 1996; Newman et al. 1997, Whitaker and

Sardeshmukh 1998). However, stochastic forcing may,
for example, also represent the fluctuations of model
parameters due to unrcsolved system components (c.g.,
Neelin and Weng 1999; Sardeshmukh et al. 2001; Sura
2002; Lin and Neelin 2002; Monahan 2004). In that
case, the stochastic process appears as multiplicative
noise which, as is well known, can substantially change
the dynamical behavior of not only nonlinear systems
(Horsthemke and Léfever 1984; Landa and McClintock
2000; Sura 2002), but also lincar systems. The poten-
tially significant role of multiplicative noise to improve
the representation of subgrid-scale phenomena in mod-
els of the climate systems has been stressed in several
studies (e.g., Buizza et al. 1999; Palmer 2001; Sardesh-
mukh et al. 2001; Pérez-Muiiuzuri et al. 2003; Sura
2002). Sardeshmukh et al. (2001) introduced multipli-
cative noisc in the lincarized barotropic vorticity cqua-
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tion, and found that the mcan stationary wave responsc
to steady forcing was amplified when the damping pa-
rameter fluctuated, but was weakened (in a scale-de-
pendent manner) when the ambient flow fluctuated.
Here, we show in the same framework that stochastic
damping also results in Rossby waves with a highly non-
Gaussian distribution.

4.a. Multiplicative noise in the linearized
barotropic vorticity equation

The linearized barotropic vorticity equation is:

af’ -

ai‘t ==-V-F+vV)—-r{+F, ©
where { is absolute vorticity, v is the nondivergent hori-
zontal velocity, r is the frictional damping rate, and F” is
anomalous forcing; F’ includes both predictable forcing
(for example, steady tropical forcing) and unpredict-
able forcing modeled using additive noise (Newman et
al. 1997). Overbars indicate time means, and primes
denote deviations from the time means.

Equation (9) can be written in terms of the stream-

function W (¢’ = VW) and in operator form as

aw
—— =LW¥ +F,

dt (10}

where L is the linear barotropic operator (for example,
Borges and Sardeshmukh 1995) and (dropping the
primes) W and F are the anomalous streamfunction and
forcing vectors, respectively. Any streamfunction (or
forcing) anomaly can then be expanded in the basis set
of complex eigenvectors E; of L as W = 3WE,, where
LE; = AE, A; are the complex eigenvalues, and W, are
the complex cxpansion cocfficients. The cquations for
any mode are decoupled from those of all other modes

so that for each mode j we can write

aw,
ar = qu’j + fj, (11)

where now the vectors W, and f; represent (¥, ¥;)"

and (f;,, f;)" respectively, and

A, — Ay
_ [ ji
L=y )

7 Jr

(12)

For simplicity we now omit the index j.

Because this model does not exhibit variability be-
yond the decay of damped waves to a steady state, it is
assumed that the model can be made more realistic by
introducing stochastic perturbations. On the one hand,
the modes retained in the model can be perturbed by
additive noise. On the other hand, introducing stochas-
tic perturbations in either A, or A, results in multiplica-
tive noise, and from (11) the Stratonovich SDE is

aw
7=L‘~I’+f+BnM+nA,

dt (13)

where the forcing is scparated into a deterministic com-
ponent f and an additive stochastic component n*. If
the decay rate of the wave (A,) is perturbed stochasti-

cally, then
B_(~ v, 0
T\ -w, 0/
If, instead, the phase speed (A;) is perturbed stochasti-

cally, then B is
B -, 0
S\ v, 0/

In either case, the multiplicative (M) and additive (A)
stochastic noise vectors are WY = (n, )T, and n* =
(2™, In the subsequent discussion m,mM m2,
and m? are assumed to be independent Gaussian

white-noise processes with corresponding amplitudes

o' o0, and o7t

(14)

(15)

(' () =0, (Y (On}()) = (V8 — 1)
M0y =0, M em} () = (o¥)8(c — 1) 6
@iy =0, (iml ) = ()8 — 1)’
0y =0, (nfom () = (07)8(t — 1)

where (. ..) denotes the averaging operator. The PDF
of this stochastic model is governed by the correspond-
ing Fokker—Planck Eq. (4) with « = 1/2.

4.b. Stochastically perturbed Rossby waves on a
superrotating basic state

The simplest form of Eq. (9) sets the time mean flow
to be in solid body rotation with the earth, where the
mean meridional flow is zero and the mean zonal flow
i8 W = uycos(), where uy is constant and 6 is latitude.
Then the eigenmodes E;are just complex spherical har-
monics Y7'(0,¢) for the wavenumber index pair (m, n)
where ¢ is longitude, m is zonal wavenumber, and 7 is
meridional wavenumber. The Rossby wave dispersion

relation gives A, = —r and A; = mD,,, where
D, = 2 +d,A|Q
" an+ 1) n
17
" an+ 1)

(see Sardeshmukh et al. 2001). In the example below,
typical parameters of atmospheric motion are used:
r=(4day) L ug=15ms " A = uyaQ = 0.0323,Q =
21 day !, and mD,, is set to 1 day ™, corresponding to
m = O(5) and n = O(5). Steady anomalous forcing is
F=(,1"

Past studies examining the Rossby wave response to
steady forcing (Hoskins et al. 1977; Sardeshmukh and
Hoskins 1988) have typically considered » and i, to be
fixed. However, a more realistic representation of
Rossby wave propagation on the sphere might also con-
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sider stochastic perturbations in r and 1, (Sardeshmukh
et al. 2001). In the following, we solve the Fokker—
Planck Eq. (4) for p using these parameters and sto-
chastically perturbing either r or i, for different values
of the noise amplitude ¢’. Weak additive noise with
amplitudes 0/ = ¢ = 0.2 is also included. Note that
because of the structure of the matrices (14) and (15),
the imaginary part of the multiplicative noise 1 (with
amplitude o) has no impact and is, therefore, not
specified. In both experiments the strength of the mul-
tiplicative noise ¢? is scaled by its effect on the vari-
ance of the system. The multiplicative noise amplitude
increased until the variances (¥2) and (¥?) reach ap-
proximately 1. This yields the interval o = 0.0,0.1, ...
0.4 for the stochastic damping, and the interval o =
0.0,0.2, ... 0.8 for the stochastic basic state.

The semi-implicit Chang—Cooper method is imple-
mented to solve (4) for p(x, f) (Chang and Cooper 1970,

of p intcgrated over the domain of computation is con-
served and normalized to 1. To interpret the results of
the Fokker—Planck equation, numerical integrations of
the SDE are also performed, using the Milstein scheme
(Kloeden and Platen 1992) with a time step of 0.1 days.
Choosing an accurate scheme is especially important
for the numerical integration of an SDE with multipli-
cative noise (Ewald et al. 2004). PDFs estimated from
numerical integrations of the SDE agreed very well
with solutions of the Fokker-Planck equation. Al-
though a single experiment is only one realization of a
stochastic process, the ergodic nature of the system en-
sures agreement with the steady state solution of the
corresponding Fokker—Planck equation for the PDF of
an infinite number of stochastic realizations.

4.B.1. STOCHASTIC DAMPING

The marginal PDFs for varying noise amplitude in

Park and Petrosian 1996). It employs a flux-conser- the damping are shown in Figs. 6a,b. Table 1 shows the
vative second-order accurate finite difference scheme, values of the skewness and the excess kurtosis (i.e., the
extended to multidimensional problems using the op- excess over the kurtosis value of 3 for a Gaussian dis-
erator splitting method (Park and Petrosian 1996; Press  tribution). If the multiplicative noise is nonexistent or

et al. 1992). A regular grid with a mesh size 0.1 and 200 weak (o2’ = 0.0, 0.1, 0.2), the marginal distributions

X 200 grid points is used. The domain of computations — p(¥,) and p(¥,) are approximately Gaussian. However,

is [-10: 10, —10: 10]. The Fokker—Planck equation is  for stronger noise amplitudes (¢ = 0.3, 0.4) the dis-
integrated until a steady state is reached. The initial —tributions become skewed with heavy, highly non-
distribution of the probability density function p is cho- = Gaussian tails. A sample time series of ¥; of the sto-
scn to be a two-dimensional Gaussian, with standard ' chastic Rossby wave model with rclatively strong sto-
deviation /0.1, centered at the origin of the system chastic frictional damping (¢?? = 0.4) is shown in Fig.
(the results are not sensitive to this choice). The value ~ 7a. The distinct feature of the time series is its inter-

) by o m
1 I
i - 2 ul
o : ¢
= ol - = 1
ainl il
won S|
1n 1u 1l 17
"
o] n dyp @
I
» w: = 1
- Fol ;
= pg T T
Ly sinl
B i i
5 i 5 m s q 5 1
% ¥

F1G. 6. (a),(b) Steady state marginal PDF of the Rossby wave model with stochastic fric-
tional damping for o™ = 0.0 (solid line), 0.1 (long dashed line), 0.2 (short dashed line), 0.3
(dotted line), and 0.4 (dotted—dashed line). (a) p(¥,), X denotes ¥,, (b) p(¥,), Y denotes ..
(c),(d) Steady state marginal PDF of the Rossby wave model with stochastic basic state for o
= 0.0 (solid line), 0.2 (long dashed line), 0.4 (short dashed line), 0.6 (dotted line), and 0.8
(dotted—dashed line), (¢) p(¥,), X denotes ¥, (d) p(V¥,), Y denotes ¥,.
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TaBLE 1. Skewness and excess kurtosis of the marginal distri-
butions p(¥,) and p(\¥,) of the stochastic Rossby wave model with
stochastic frictional damping. The excess kurtosis measures the
departure from Gaussianity: excess kurtosis = kurtosis — 3. Note
the strong departures (intermittency) from Gaussianity.

Skewness Excess kurtosis

Multiplicative noise o T, T, T, T,
0.0 0.0 0.0 0.0 0.0

0.1 -0.1 0.0 0.2 02

0.2 -0.3 —-0.1 1.4 1.3

0.3 -0.7 —-0.3 0.6 7.5

0.4 2.7 —-14 99.7 83.7

mittent behavior, which gives rise to the heavy, non-
Gaussian tails of the PDFs, meaning that extreme
events are far more probable than can be expected
from a Gaussian distribution. The positive excess kur-
tosis is a measure of this intermittency.

4.B.2. STOCHASTIC BASIC STATE

Unlike the stochastic damping case, increasing noise
in the superrotation does not produce heavy-tailed dis-
tributions, as is evident in both the marginal PDFs

Ap M
15 |

: M‘r«wﬁhﬁwﬁ '|"" ww’]‘mw ~|'m

i 0 ill] LR l:::“;i];;:l] L) i‘-:l_'-f.l A
ot

ZLik ' ' ' '
B A0 100 150 2K 2300 30

Limme | days|

aany 400

FIG. 7. Sample time series of W, of the stochastic Rossby wave
model with (a) stochastic frictional damping (¢ = 0.4) and (b)
stochastic basic state (6 = 0.8). Here, Y denotes ¥, Note the
different scales on the ordinates.

(Figs. 6¢,d) and the skewness and cxcess kurtosis in
Table 2. A sample time series of W¥; with a relatively
strong stochastic basic state (o = 0.8) (Fig. 7b) does
not show the intermittent behavior seen in Fig. 7a. Be-
cause the stochasticity in the basic state only influences
the phase of the Rossby wave, the PDF of the system
remains more nearly Gaussian, while multiplicative
noise in the frictional damping alters the energy of the
wave and causes the PDF to be highly non-Gaussian
(see appendix B and Fig. B.1 for more details).

4.c. Departures from bivariate Gaussianity

As can be expected from the marginal PDFs, stochas-
tic damping produces notable departures from bivariate
Gaussianity. This is true not only for parameters rep-
resenting Rossby waves on a superrotating flow, but
also for parameters representing the more general
problem of large-scale barotropic Rossby waves evolv-
ing on a zonally and meridionally varying base state. As
an example, we set A, = 0.07 and A; = 0.19 in (12),
corresponding to a period of about 33 days and an e-
folding time of 14 days, typical of the least-damped
eigenmode of the 250-hPa climatological December—
February flow (Borges and Sardeshmukh 1995). We set
o2 = 0.05, and for simplicity, set the additive noise to
zero; including additive noise tends to decrease skew-
ness, which can be offset by increasing F, but has much
less effect upon the heavy tails. For display purposes,
we remove the mean drift, rotate the PDF so that the
abscissa points in the direction of maximum covariance,
normalize by the variance along both axes, and show
the difference between the PDF and the corresponding
bivariate Gaussian distribution.

The resulting departure from Gaussianity (Fig. 8) ap-
pears as two slightly arcing ridge/trough (positive/
ncgative departurcs) pairs aligned roughly along a linc.
This pattern is qualitatively similar for a wide param-
eter range. Decreasing either A, or A, strengthens the
departures from Gaussianity, suggesting that the lower
frequency and least-damped barotropic eigenmodes
could have the greatest non-Gaussian behavior. Chang-
ing these parameters can also change the covariance
between the real and imaginary parts of ¥, and thus the
rotation applied in Fig. 8.

TaBLE 2. Skewness and excess kurtosis of the marginal distri-
butions p(V¥,) and p(¥;) of the stochastic Rossby wave model with
a stochastic basic state. The excess kurtosis measures the depar-
ture from Gaussianity: excess kurtosis = kurtosis —3. Note that
the distributions are nearly Gaussian, even for strong multiplica-
tive noise.

Skewness Excess kurtosis

Multiplicative noise o/ v, v, v, v,
0.0 0.0 0.0 0.0 0.0

0.2 0.0 0.0 0.0 0.0

0.4 0.0 —0.1 0.1 0.0

0.6 —0.1 —0.2 0.3 0.2

0.8 —-0.2 —-04 0.9 0.9
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FiG. 8. Steady state PDF anomalies (departures from bivariate
Gaussianity) of the Rossby wave model (A, = 0.07 and A, = 0.19)
with a stochastic frictional damping (¢ = 0.05). The axes are
rotated so that X = 0.86W¥, — 0.51¥;and ¥ = 0.5¥, — 0.86¥,. The
contour interval is 0.002.

5. Observed atmospheric PDFs

Having demonstrated that non-Gaussian behavior
can result from simple linear multiplicative noise, we
next compare the observed non-Gaussianity to the mul-
tiplicative stochastic paradigm. Following previous
studies (e.g., Mo and Ghil 1988; Molteni et al. 1990;
Kimoto and Ghil 1993a,b; Corti et al. 1999; Smyth et al.
1999; Weisheimer et al. 2001), we consider non-Gauss-
ian regimes in a highly truncated bivariate phase space
spanned by two leading EOFs,

5.a. Bivariate PDF

The analysis is applied to Northern Hemisphere 750-
hPa streamfunction data for the extended winters (No-
vember-March) of 1949/50-2001/02, spectrally trun-
cated to T21 resolution. The data were obtained from
the National Centers for Environmental Prediction-
National Center for Atmospheric Research (NCEP/
NCAR) Reanalysis dataset (Kalnay et al. 1996).
Streamfunction anomalies were defined by removing
the scasonal cycle (i.c., the annual mcan plus the first
three annual harmonics) from each variable at each
gridpoint and then applying a 7-day running mean fil-
ter. Calculations using 500-hPa geopotential height
pentad data yielded similar results (not shown).

A principal component analysis (PCA) was applied
to the streamfunction anomalies. The first two EOF
patterns form the orthogonal basis vectors of a reduced
phase space. The first EOF (EOF1 with principal com-
ponent PC1) explains 16.6% of the total variance,

Fig. 8 live 4/C
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whercas the sccond EOF (EOF2 with principal compo-
nent PC2) explains 8.2%. The EOFs (not shown) re-
semble those found in earlier studies (e.g., Kimoto and
Ghil 1993a; Smyth et al. 1999); signs are defined as in
Kimoto and Ghil (1993a). The PCs are normalized to
have zero mean and unit standard deviation. Monahan
et al. (2003) suggested that the leading atmospheric re-
gimes have a large projection on PC1 and PC2 and a
small, but non-negligible, projection on PC3. Including
this projection on PC3 did not affect any of the results
shown below.

The bivariate PDF of PC1 and PC2, determined by
dividing the interval [—4: 4, —4: 4] into 20 X 20 equal
bins and then applying a 3 X 3 bin smoothing, is shown
in Fig. 9a. Although the PDF is generated with a fairly
simple technique, virtually identical results are ob-
tained using bivariate Gaussian Kernel density estima-
tion with optimal bandwidth A = 0.25 (not shown).
Positive (negative) departures from Gaussianity (Fig.
9b) indicate that the observed PDF is greater (smaller)
than the corresponding bivariate Gaussian distribution.

Past studies of bivariate PDFs such as those shown
here tend to focus on the local maxima, determined for
example using some bump-hunting algorithm, identify-
ing them as regimes and producing corresponding com-
posite anomaly maps. Such maxima are, however, sen-
sitive to the dataset used, to the smoothing applied to
the PDF, and perhaps most of all to sampling consid-
erations (particularly the data period). For example,
the maximum at (0, —2.5) lies in different locations
when only the years 1949-75 or only the years 1976—
2001 are used, a maximum at (1, 1.5) is relatively more
prominent for the years 1958-98 (e.g., Monahan et al.
2001).

Considcrably morc robust across all studics, includ-
ing this one, is the overall pattern of the departures
from bivariate Gaussianity, consisting of two slightly
arcing ridge/trough pairs aligned roughly along a line
from the upper left quadrant to the lower right quad-
rant. Notably, the bivariate skewness (e.g., Stephenson
et al. 2004) is 0.28, which is 99% significant, whereas
excess bivariate kurtosis (0.36) is 90% significant. Note
also the pronounced negative region, this feature has an
amplitude as large as the positive departures, yet has
generally received far less attention. The alternating
positive/negative departures pattern exists in many dif-
ferent subsamples of the data using only the odd years,
even years, or the years 1949-75, or separately the years
1976-2001. Also, broad regions of positive and nega-
tive departures are statistically significant at the 90%
confidence level (heavy contours in Fig. 9a) determined
using the Monte Carlo method employed in Kimoto
and Ghil (1993a).

5.b. Balancing the probability budget

Using the Fokker-Planck Eq. (4), a steady climato-
logical probability budget for a bivariate system (i = 1,
2;j =1, 2), assumed to be Markovian, is

[Fol
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dj 4 The cffective drift (and the related standard crrors)
of the data components are shown in Fig. 10. The un-
3 certainties are relatively small, the standard error is
about 0.01-0.02 for most of the points. Note that the
24 drift is nearly linear.
At this point it is important to test if the white-noise
11 approximation made in the bivariate version of Eq. (2)
i is justifiable for the data used. For any observation
g 0 Xops(?) the effective drift A(x) estimated from data (see
Fig. 10) can be used to calculate a forward time step Ar:
=41 x(f + Af) = A(X)Af + X,,4(9). If the white-noise assump-
e tion is correct the residual
. T =X, (f + A — x(t + Ar) (19)
should equal the multiplicative white-noise term B(x).
—4 S t ? . Indeed, the residual is almost uncorrelated on the re-
= S Tk 3 & & ¥ solved time scale [i.e., r(f = 7 days) ~ 0, as shown in Fig.
11]. In contrast, the decorrelation time scales of PC1
b} + and PC2 are about 12 and 15 days and, therefore, the
white-noise approximation can be justified.
4 To the extent that the white-noise approximation is
valid, we ask whether or not the probability budget can
it be balanced using pure additive noise. That is, if we
54 rewrite Eq. (18) for the special case where B is purely
additive (i = 1, 2;j = 1, 2),
3 g4 >
a 9 1 T ]
3 Z ax, Ap(x, 1) + 5 12; (B4B.); ax,-ax,-p("’ H=R,
&l (20)
is the residual R negligibly small? Because the errors in
=31 a direct estimation of the diffusion term are large (Sura
and Barsugli 2002), we instead use the effective drift
i § ok 22 -0 85 o 7 3 4 A(x) (Fig. 10) and the steady-state FDR (5) to first
PG determine the covariance of the noise (B(x)B"(x)) re-

FI1G. 9. (a) PDF of PC1 and PC2 (thin solid lines). Regions of
significant positive deviations from a bivariate Gaussian PDF are
indicated by thick solid lines, significant regions of negative de-
viations are indicated by thick dashed lines. The deviations from
a bivariate Gaussian PDF are significant at the 90% confidence
level. (b) The actual PDF anomalies of PC1 and PC2. The zero
contour is omitted for clarity, the contour interval is 0.002.

9 1 ¥
—Z o, AP0+ 3 2}

T —
ox,0x; (BB )ijp(X, nH=0.

(18)

That is, in a time-averaged sense, the effective drift
balances the stochastic diffusion. We can then use Eq.
(18) to ask whether the nonlinear effective drift due to
interaction between PC1 and PC2, estimated by using
its finite difference approximation (6), is sufficient to
produce the non-Gaussianity of the observed PDF.
That is, we ask whether or not the probability budget
can be balanced using purely additive stochastic forc-
ing.

Fig. 9 live 4/C

quired to balance the drift in (18):

NV <0.079 0.001)
(BB (x) = | 001 0.103)-

Next, using the PDF (Fig. 9), the effective drift (Fig.
10), and assuming that the noise given by the matrix
(21) is purcly additive (i.c., assuming BB} = (B(x)
B™(x))) the two terms on the left-hand side of the Fok-
ker—Planck Eq. (20) are evaluated and shown in Figs.
12a and 12b. Their sum (the residual R) is shown in Fig.
12c¢. The residual is not zero, indicating that pure addi-
tive noise is not able to balance the probability budget.

Despite the relative shortness of the data record, this
result appears robust. For example, it is virtually un-
changed if the data subsamples listed at the end of sec-
tion 5.a are used. Moreover, the residual is statistically
significant at the 90% confidence level, determined as
before, using a Monte Carlo method. One thousand
50-yr time series having the same zero-lag covariances
as the original time series were generated by using the
effective drift (Fig. 10) and the corresponding additive
noise [Eq. (21)], and the deterministic and additive sto-

21
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F1G. 10. The effective drift (and its standard error) estimated from data. (a) Al(x,y) denotes the x
component (PC1), and (b) A2(x,y) denotes the y component (PC2) of the two-dimensional system. The
contour and shading interval is 0.02. (c),(d) Related standard errors with a contour and shading interval
0.005.

chastic terms (and their sum) in the Fokker—Planck
equation were computed for each of them. The number
of those random terms larger/smaller than the original
terms were used to obtain confidence intervals at each
point in the bivariate phase space.

If we partition the net noise effect BB' in (18) into an
additive noisc term B,BY and a multiplicative noisc
term B;BR then — R would represent the multiplicative
part:

1 o .
R= =32 i, BBy PO, (22
with R and BB}, appropriately scaled so that the fluc-
tuation—dissipation relation is satisfied.

The key point here is that if the departures from
Gaussianity were primarily due to the nonlinear drift
term, then the probability budget for the joint PC1/2
PDF would be balanced with pure additive noise.
Clearly, it is not; all three terms of the Fokker—Planck

Fig. 10 live 4/C
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FiG. 11. Autocorrelation functions of the residual r = x,,,(# +
Af) — x(t + Ar) for PC1 (solid line) and PC2 (dashed line). Note
that for both PC1 and PC2 the autocorrelation is close to zero
after the resolved time scale of seven days; see section 5.b for
details.
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Fi1G. 12. (a) The effective deterministic term (C.I. = 0.001), (b) the stochastic term (C.I. = 0.001, the
dark dashed line indicates the zero contour; see text for details), and (c) the sum of the effective
deterministic and the stochastic term of the steady Fokker-Planck Eq. (20) evaluated by using the PDF
(Fig. 9), the deterministic drift (Fig. 10), and pure additive noise given by the matrix (21): C.I. = 0.0005.
The negative value of that sum (—R) can be interpreted as the multiplicative noise contribution of the
Fokker-Planck Eq. (20), positive (negative) values mean that the additive noise is too weak (strong) to
balance the deterministic term. The shown regions are significant at the 90% confidence level. The x

component represents PC1; the y component represents PC2.

equation have the same order of magnitude. Positive
(ncgative) valucs in Fig. 12¢ mcan that the additive
noise is too weak (strong) to balance the drift. Thus, the
observed departures from Gaussianity do not result
from the nonlinear drift term defined in the two-
dimensional space, but rather from the multiplicative
structure of the noise.

6. Summary and discussion

In this paper we outlined a stochastic perspective on
atmospheric regime behavior based on a treatment of
climate variability as a stochastic system with state-
dependent noise. We demonstrated how some simple
linear (or nearly linear) systems with multiplicative
noise can produce non-Gaussian regime-like behavior
without multiple equilibrium solutions of the governing
equations. The presence of non-Gaussianity, therefore,

Fig. 12 live 4/C

does not by itself imply that a system has deterministic
nonlincar multiple regimes, nor that these regimes have
a noticeable enhancement of persistence or predictabil-
ity due to this nonlinearity.

The linear Rossby wave response to steady forcing is
non-Gaussian when the wave damping has a stochastic
component, as might be expected, for example, from
gustiness in boundary layer dissipation. This multipli-
cative noisc leads to a non-Gaussian distribution duc to
an intermittent behavior of the Rossby waves. Many
nonlinear systems are intermittent in time, space, or
both (e.g., Sreenivasan 1999; Sreenivasan and Antonia
1997). Again, the most common explanation for inter-
mittency is that it is induced by nonlinearities in the
slow manifold of the governing equations.

One motivation for this paper is our earlier work
with linear inverse modeling (LIM; Winkler et al. 2001;
Newman et al. 2003), in which observed weekly vari-
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ability of 250- and 750-hPa strcamfunction is suc-
cessfully modeled and predicted with a multivariate lin-
ear system [with O(30) degrees of freedom] plus
noise. Interestingly, both predictability and forecast
skill (for example, wintertime week-3 skill, shown with

shading in Fig. 13) is high in regions where non-

Gaussianity is relatively large (cross-hatching in Fig.
13). In fact, the deterministic linear operator in LIM
cannot distinguish between a linear system driven by
additive noise and one that also includes linear multi-
plicative noise, because then the noise-induced drift is
part of the linear operator returned by LIM. In the
former case, LIM returns the deterministic linear op-
erator L, and the “best” (in the least squares error
sense) forecasts of x at forecast lead T are x(t + 1) =
G(1)x(¢) = exp(L7)x(?). In the latter case, LIM returns
the effective linear operator L = L + (1/2)B? (i.e., the
noise-induced drift is part of the linear operator re-
turned by LIM), and the best forecasts are x(r + 1) =
G(1)x(¢) = exp(L7)x(¢). Trying to differentiate between
these two models is a major focus of our current re-
search.

In light of the success of LIM, the similarity between
Figs. 8 and 9b and the analysis of the probability budget
of the bivariate PC1/2 PDF suggests that atmospheric

IF1G. 13. Skill of the LIM compared with regions of non-
Gaussianity, adopted from Newman et al. (2003). Shading repre-
sents local anomaly correlation of week-3 250-hPa streamfunction
observations with LIM forecasts for Dec-Feb 1969/70-2000/01.
Contour interval is 0.1. Shading of positive values starts at 0.2,
darker shading denotes larger correlation values. Cross-hatching
represents region of significant non-Gaussianity, defined as loca-
tions where the value of the nonparametric two-sample Kolmo-
gorov—Smirnov measure indicates that the observed PDF is sig-
nificantly different from Gaussianity at the 95% confidence level
[Kendall and Stuart (1977); also see the appendix in Sardeshmukh
et al. (2000)].
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variability may be represented by a phasc space that
can be characterized not so much by localized regimes
as by less-localized departures from Gaussianity that
are largely a result of an effectively almost linear sys-
tem perturbed by multiplicative noise. However, while
our observational results are suggestive, they do not
constitute a proof. Notably, we do not yet have a solu-
tion for what B(x) should be for the real atmosphere,
either by determining it from the extremely limited
dataset, from extended model datasets, or from a sim-
plification of the equations of motion.

All complete models of regime behavior must deal
with the closure problem. That is, there must not only
be a deterministic model [e.g., Ny in Eq. (1)] of the
resolved anomalics, but also consideration of the cf-
fects of the unresolved anomalies [e.g., N, and N in Eq.
(1)]. For low-frequency variability, this partition may
not be well defined, especially since there is not a clean
separation of time scales in the atmosphere. Thus, the
two paradigms of non-Gaussian atmospheric behavior
discussed here need not be mutually exclusive. For ex-
ample, some or even all of what appears as multiplica-
tive noise in a severely truncated system such as the
PC1/PC2 space could appear as deterministic nonlinear
interactions in a higher-order space. Given that r [Eq.
(19)] has a relatively short decorrelation time, however,
it is reasonable to suggest that, on the weekly time
scale, the multiplicative noise closure results in as much
understanding of the non-Gaussianity of PC1 and PC2
as would result from-including many more degrees of
freedom in the resolved portion of the flow. And in a
practical scnse, of course, all of these degrees of free-
dom must be simulated and predicted, which might still
require a multiplicative noise closure for their under-
standing.

Some other studies (e.g., Achatz and Branstator
1999; D’ Andrea and Vautard 2001) have modeled non-
linear baroclinic atmospheric model output using a
relatively low-order [O(30)] empirical nonlinear deter-
ministic model, although it is not clear how important
the nonlinearity is for reproducing the statistics of
variability as opposed to reproducing the correct mean
climate. Nevertheless, our results suggest that a com-
prehensive approach toward a better understanding of
atmospheric regime behavior must consider state-
dependent noise. Further research is required to assess
the more detailed extent to which multiple non-
Gaussian regimes may be due to the nature of unpre-
dictable stochastic forcing, rather than to the slow, pre-
dictable deterministic nonlinear dynamics of the atmo-
sphere.
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APPENDIX A

Fitting a PDF to dctcrministic and stochastic
models

In this appendix we show how various combinations
of different deterministic and stochastic terms in the
governing SDE can give rise to a given PDF. We con-
sider a univariate Itd6 SDE of the form

dx = A(x)dt + B(x)dW, (A1)

where A(x) and B(x) are sufficiently smooth and
bounded functions, and W denotes a Wiener process.
The PDF p(x, #) of the Itd SDE (A.1) is governed by the
corresponding It6 Fokker—Planck equation (e.g., Gar-
diner 1985; Horsthemke and Léféver 1984; Paul and
Baschnagel 1999):

2

ap(x, 1) ] 19
=~ ;AW 0+ 5 a‘;B(X)ZP(X, f).

ar

(A2)

Given a stationary non-Gaussian PDF p(x) (with
p(—=») = p(*) = 0) and pure additive noise B*= const.,
the stationary Fokker—Planck equation can be solved
for A(x):

(A.3)

with the arbitrary constant 3. Given the same PDF p(x)
and the deterministic damping term A(x), the station-
ary Fokker—Planck equation can be solved for B(x):

2 X 172
B(x) = (p(x) f [A)p(x") + B]dX’) :

(A4)

with an arbitrary constant 8. That means that the same
PDF can either be produced by nonlinear deterministic
dynamics with additive noise, or, if A(x) = —ex, by
linear deterministic dynamics with multiplicative noise.
Because we expect A(x) and B(x) to be bounded in
physically reasonable situations, the constant is set to
zero: 3 = 0.

Even if deterministic and stochastic regimes do have
the same stationary PDFs, the dynamical properties
(and, therefore, the predictabilities) of the trajectories
are fundamentally different. This behavior can be illus-
trated by the mean residence times. The residence time
of a stochastic trajectory initially at x inside the interval
[xy, x5] is the time until the trajectory first hits the
boundary of the interval. The mean residence time 7(x)
of a stochastic trajectory governed by the SDE (A.1) is
given by (e.g., Gardiner 1985; Horsthemke and Léfever
1984; Paul and Baschnagel 1999),

a0 L a1 o A

(x) ox 2 (x) axz ] ( . )

with the boundary conditions 7(x;) = 7(x,) = 0.
APPENDIX B

An analytical solution of a Fokker-Planck
cquation with multiplicative noisc

In this appendix an analytical solution of the Itd and
Stratonovich Fokker—Planck equation for a stochastic
basic state and no steady Rossby wave forcing [S =
(0,0)T] is presented. This solution is then used to discuss
the fundamental physical difference between a stochas-
tic frictional damping and a stochastic basic state. The
SDE for the time evolution of the vector ¥ = (V¥,, V)" is

aw
— —AY+ By™ + n*, (B.1)
with the matrices
([ —r —mD,
A= PN\ — 7, (B.2)
and
gl -0
=L w o) (B.3)

and the multiplicative and additive stochastic forcing
vectors ™ = (M )Y, and 0! = (m?,n")". The sto-
chastic components 7, n” n2, and n* are assumed to
be independent Gaussian white-noise processes with
corresponding amplitudes o,0¥,07*, and o7* [Eq. (16)].
Note that because of the structure of the matrix (B.3)
the imaginary part of the multiplicative noise n* (with
amplitude ¢)’) has no impact and is, therefore, not
specified. For identical additive noise amplitudes ' =
o = o the corresponding Fokker—Planck cquation
for the PDF p(W, t) reads (i = 1,2;j = 1,2):

d
a [(A%,-

a
+ o zk (0-?4)2<8\If- Bik>Bfk:|p(q’, f)
s i

ap(W, 1)
a Z

2

1 2 9 T
+5 E @ 5w, (BB p(¥.0)

1 s 0
+3 E (o) P pOW, 1), (B.4)
with a = 0 for Ito systems and « = 1/2 for Stratonovich
systems. Because of the identical additive noise ampli-
tudes 0} = 0 = o the Fokker-Planck equation has
an exact stationary Gaussian solution even in the pres-
ence of multiplicative noise with amplitude o
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p(¥) = @ exp[— Y7 + V7], (B.5)
with the normalization constant ®, and
1
ro— 5 (@Y + a(o})?
Y= (B.6)

CoN

Notc that the noisc-induced drift in the Stratonovich
system (a = 1/2) effectively increases the damping of
the mean flow. Yet, the noise-induced drift is compen-
sated by the remaining effect of the multiplicative
noise. Thus, in the Stratonovich calculus there is no
effect of the multiplicative noise on the stationary PDF
at all.

This behavior can be understood by simple geometric
considerations described below. These considerations
also clarify the fundamental physical difference be-
tween a stochastic frictional damping and a stochastic
basic state. A schematic explanation is shown in Fig.
B.1. The equation of a circle (the undamped motion of
the Rossby wave with or without the presence of addi-
tive noisc with identical amplitudes o2 = o¢* = ¢*) with
radius a around the origin of the coordinate system in
the (¥,, ¥,) plane is

AV, W) =92+ W =% (B.7)

A vector perpendicular to the circle (B.7) is V£ (¥,, ¥)
« (=¥, —¥,). A vector tangential to the circle (B.7) is
VF(¥,, V) Xe, = (—¥,¥,), where ¢, is the unit vector

— Unedaenjed Mutin Lswabicngth ol Muluphoatise:

; ; Hochagtic Favcing

_____ Travnzaed hdotion

Plireat'om o Mo lrplicatve

Slchastic [onsng

3 o) lorgenliol Seize an limac Sl
Tyt walne RS I nmpE g

- Wy

F1G. Bl. A schematic sketch to show the fundamental physical
difference between a stochastic frictional damping and a stochas-
tic basic state. The thick solid circle shows the energy conserving
wave motion of the undamped system. The thick dashed line
shows the phase space motion of the corresponding damped sys-
tem. The thin dashed circles are isolines of the strength [defined
as (0MW))? + (¢MVP)?] of the multiplicative stochastic forcing.
The arrows show the directions of the stochastic kicks in (a) the
zonal basic state (tangential) and (b) the frictional damping (per-
pendicular). See appendix B for a more detailed discussion.
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perpendicular to the (W,, W,) planc. It is clcar from Eqs.
(14) and (15), and the multiplicative noise vector n** =
(n2 M7, that the kicks of the stochastic damping are
perpendicular to the undamped circular phase space
motion, whereas the stochastic kicks in the basic state
are tangential to it. Therefore, the stochasticity in the
zonal basic state uy only influences the phase of the
Rossby wave, but not its energy.

When stochastic perturbations occur in the frictional
damping r,, the energy is altered, but not the phase of
the Rossby wave. In Fig. B.1 the thick solid circle indi-
cates the energy conserving wave motion of the un-
damped system with or without the presence of additive
noise with identical amplitudes 0! = o = o”. The
thick dashed line shows the phase space motion of the
corresponding damped system. The thin dashed circles
are isolines of the strength [defined as (6™ ¥,)* + (¢
W,)?] of the multiplicative stochastic forcing. The ar-
rows show the directions of the stochastic kicks in (a)
the zonal basic state and (b) the frictional damping.

Because the stochasticity in the basic state only in-
fluences the phase of the Rossby wave, the PDF of the
system remains strictly Gaussian for that kind of mul-
tiplicative noise. Yet, since the multiplicative noise in
the frictional damping alters the energy of the wave, the
PDF becomes highly non-Gaussian.

The situation changes if the undamped trajectory
docs not coincide with the circular lines of constant
strength of the multiplicative stochastic forcing. This
situation occurs if nonidentical additive noise ampli-
tudes (o7t # o7') are used, or if a steady Rossby wave
forcing [S # (0, 0)"] is imposed on the governing Eq.
(B.1). Then, the stationary PDF becomes slightly non-
Gaussian even in the case of a stochastic basic state.
Nonctheless, the cffect of a stochastic frictional damp-
ing on the non-Gaussianity of the systems PDF is much
stronger than the corresponding effect of a stochastic
basic state (see Fig. 6).
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